Number Systems \& storage

- Number systems are sets of characters that represent specific number values
- The most common is the decimal system
- It contains 10 unique characters (it is 'base 10 ')
- To represent values greater than 10, the unique characters can be combined with each other:

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

- The Binary number system is important in computing
- It contains 2 unique characters (it is 'base 2')
- To represent values greater than 2, the unique characters can be combined with each other:

0	1
01	11

- The Hexadecimal number system is often used to represent binary in a more compact form
- It contains 16 unique characters (it is 'base 16')
- To represent values greater than 16 , the unique characters can be combined with each other:

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
10	11	12	13	14	15	16	17	18	19	$1 A$	$1 B$	$1 C$	$1 D$	$1 E$	$1 F$

Number Systems \& storage

Why Binary?

-Computers use binary in storage because it aligns with the electronic nature of computer hardware.
-Binary simplifies electronic circuitry design and facilitates logical operations and mathematical computations. -Binary storage is reliable, scalable, and compatible with various storage media. -Binary's two-digit system (0s and 1s) efficiently represents and processes information in computers.
-Signed integers: Sign and Magnitude, One's Complement, Two's Complement, and others.

Common Storage
Standards -Floating-point representations: IEEE 754, which includes variations such as single precision (32 bits), double precision (64 bits), and others. -Text: ASCII, Unicode, UTF-16, and others.

