Number Systems & storage

- Number systems are sets of characters that represent specific number values
- The most common is the **decimal** system
- It contains 10 unique characters (it is **'base 10'**)
- To represent values greater than 10, the unique characters can be combined with each other:

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19

- The **Binary** number system is important in computing
- It contains 2 unique characters (it is 'base 2')
- To represent values greater than 2, the unique characters can be combined with each other:

0	1
01	11

- The **Hexadecimal** number system is often used to represent binary in a more compact form
- It contains 16 unique characters (it is **'base 16'**)
- To represent values greater than 16, the unique characters can be combined with each other:

0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F

Number Systems & storage

Why Binary?	 Computers use binary in storage because it aligns with the electronic nature of computer hardware. Binary simplifies electronic circuitry design and facilitates logical operations and mathematical computations. Binary storage is reliable, scalable, and compatible with various storage media. Binary's two-digit system (0s and 1s) efficiently represents and processes information in computers.

Common Storage Standards

Signed integers: Sign and Magnitude, One's Complement, Two's Complement, and others.
Floating-point representations: IEEE 754, which includes variations such as single precision (32 bits), double precision (64 bits), and others.
Text: ASCII, Unicode, UTF-16, and others.

Study Skills on iLearn https://moodle.bl.rdi.co.uk/course/ view.php?id=921§ion=1

Emails Study-skills@arden.ac.uk and libraries@arden.ac.uk

Blog https://library.arden.ac.uk/library-blog

Twitter @LibraryArden