Session Handout

Study Skills Optional Workshop

Advanced Statistics

Guides to selecting the right statistical tests and graphs

Summary of descriptive and graphical statistics

Chart	Variable type	Purpose	Summary Statistics				
Pie Chart or bar chart	One Categorical	Shows frequencies/ proportions/percentages	Class percentages				
Stacked / multiple bar	Two categorical	Compares proportions within groups	Percentages within groups				
Histogram	One scale	Shows distribution of results	Mean and Standard deviation				
Scatter graph	Two scale	Shows relationship between two variables and helps detect outliers	Correlation co-				
efficient				$	$	Boxplot	One scale/ one categorical
:---	:---						
Compares spread of values	Means by time point						
Line Chart	Scale by time						
Means plot	Displays changes over time Categorical						
Comparison of groups	Looks at combined effect of two scale variable						

Source: tutorsquickguidetostatisticsprint2uppamphlet.pdf (statstutor.ac.uk)

Common Single Comparison Tests

Comparing:	Dependent (outcome) variable	Independent (explanatory) variable	Parametric test (data is normally distributed)	Non-parametric test (ordinal/ skewed data)
The averages of two INDEPENDENT groups	Scale	Nominal (Binary)	Independent t-test	Mann-Whitney test/ Wilcoxon rank sum
The averages of 3+ independent groups	Scale	Nominal	One-way ANOVA	Kruskal-Wallis test
The average difference between paired (matched) samples e.g. weight before and after a diet	Scale	Time/ Condition variable	Paired t-test	Wilcoxon signed rank
test				

Tests of Association

Comparing:	Dependent (outcome) variable	Independent (explanatory) variable	Parametric test (data is normally distributed)	Non-parametric test (ordinal/ skewed data)
Relationship between 2 continuous variables	Scale	Scale	Pearson's Correlation Coefficient	Spearman's Correlation Coefficient
Predicting the value of one variable from the value of a predictor variable or looking for significant relationships	Scale	Any	Nominal (Binple Linear Regression	Any

Source: tutorsquickguidetostatisticsprint2uppamphlet.pdf (statstutor.ac.uk)
One scale dependent and several independent variables

$\mathbf{1}^{\text {st }}$ independent	$\mathbf{2}^{\text {nd }}$ independent	Test
Scale	Scale/ binary	Multiple regression
Nominal (Independent groups)	Nominal (Independent groups)	2 way ANOVA
Nominal (repeated measures)	Nominal (repeated measures)	2 way repeated measures ANOVA
Nominal (Independent groups)	Nominal (repeated measures)	Mixed ANOVA
Nominal	Scale	ANCOVA
Source: tutorsquickguidetostatisticsprint2uppamphlet.pdf (statstutor.ac.uk)		

Which one of Regression or ANOVA to use? Use regression if you have only scale or binary independent variables. Categorical variables can be recoded to dummy binary variables but if there are a lot of categories, ANOVA is preferable.

Hypothesis testing for Inferential Statistics

Inferential Statistics is used to make conclusions/inferences and take decisions about data. Such conclusions and decisions include comparing data of a dependent variable across various groups to check if they are the same or if differences exist across the groups (i.e., test of comparison), checking whether there is association/relationship between two or more variables (i.e., test of association or correlation), evaluating the nature of the relationship between variables in form of equation/formula (Regression).

Processes in Hypothesis Testing

(1) Understand the research or study, independent variable(s), dependent variable(s) and the end goals or purpose of the research properly.
(2) Form the Research Question correctly: This is usually to explore a comparison, association, or relationship
(3) Determine the correct types of variables and level of measurement of the variables: Usually Categorical (Ordinal or Nominal) or Scale (Continuous)
(4) Form the Null hypothesis $\left(\mathbf{H}_{\mathbf{0}}\right)$ and Alternative Hypothesis $\left(\mathbf{H}_{1}\right)$.

Null Hypothesis $\left(\mathrm{H}_{\mathrm{o}}\right)$ usually assumes no difference, association or relationship between the variables. It also means the hypothesis test parameter is not significant. The Alternative Hypothesis $\left(\mathrm{H}_{1}\right)$ assumes difference, association or relationship between the variables. It also means the hypothesis test parameter is significant.
Examples of Null Hypothesis (Ho) are:

- For comparing the means of a dependent variable (e.g., response time) across various levels (Teenagers and Adults) of an independent variable, Age Group.

Ho: There is no significant difference in the mean response time of teenagers and adult participants
\mathbf{H}_{1} (two-sided): There is significant difference in the mean response time of teenagers and adult participants
\mathbf{H}_{1} (one-sided): The mean response time of teenager is faster than that of adult OR The mean response time of adult is faster than that of teenager

- For checking association and relationship between variables. If there is association between an independent variable (x) and a dependent variable (y), we obtain a formula or equation relating them together in the form of $y=m x+c$ where \mathbf{m} is the slope and \mathbf{c} is the intercept. If truly a relationship exists between the variables, \mathbf{m} and \mathbf{c} shouldn't both be 0 . Sometimes \mathbf{c} can still be 0 but \mathbf{m} should never be 0 because it is \mathbf{m} we use to multiply the value of the independent variable (x). So, we need to put the values of \mathbf{m} and \mathbf{c} obtained by regression analysis to test to know whether \mathbf{m} and \mathbf{c} are truly those values obtained (i.e., whether they are significant) or whether they are just random occurrence and rather zero (i.e., whether they are not significant).

Ho: The correlation and regression between the variables is not significant OR The regression values (m and c) are not significant $\mathbf{O R}$ The regression values (m and c) are zero
\mathbf{H}_{1} : The correlation and regression between the variables is significant OR The regression values (m and c) are significant $\mathbf{O R}$ The regression values (m and c) are not zero.

- For checking normality of a dependent variable (e.g., response time).

Ho: The data for the dependent variable is normally distributed. Accepting H_{o} means that the normality test is satisfied, and parametric tests can be used.
\mathbf{H}_{1} : The data for the dependent variable is not normally distributed. Accepting H_{1} means that the normality test is not satisfied, and parametric tests may not be used.

- For checking homogeneity (i.e., equality of population variances) of a dependent variable (e.g., response time) across various levels (Teenagers and Adults) of an independent variable, Age Group.

Ho: There is no significant difference in the population variance of response time of teenagers and adult participants. Accepting H_{0} means that the homogeneity test is satisfied, and parametric tests can be used.
\mathbf{H}_{1} (two-sided): There is significant difference in the population variance of response time of teenagers and adult participants. Accepting H_{1} means that the homogeneity test is not satisfied, and parametric tests may not be used.
(5) Perform the inferential statistics. Decide on whether parametric or non-parametric tests should be used. Parametric tests make assumption that the data follows normal distribution, while non-parametric tests don't make assumption about the distribution of the data.
(6) Interpret the results by checking the probability \mathbf{p}-value which can be found under $\mathbf{S i g}$ column in the table of output.

A decision between the two hypotheses is made by viewing the ' p -value' or 'Sig-value', which is the probability (or chance) of getting the collected data (or more extreme) under the assumption of the null hypothesis.

If this probability is small, ' H_{0} is rejected in favour of H_{1} ', termed a 'statistically significant result'; otherwise, we 'don't reject H_{0} ' which is termed a 'non-statistically significant result'.

What is 'small'?
Conventionally, we use $\mathrm{p}=0.05$ meaning Significance level of 5% or confidence level of 95%; hence, if

- $\mathrm{p} \leq 0.05$ (' p is less than or equal to 0.05 '), reject H_{o} in favour of H_{1}
- $\quad \mathrm{p}>0.05$ ('p is greater than 0.05 '), fail to reject H_{o}

Sometimes, when the p-value is close to 0.05 , it might limit the level of trust we have in the output. So, we can extend it sometimes to:

Alternatively, interpret the p-value so that:

- $\quad \mathrm{p}>0.1$ implies no evidence to reject $\mathbf{H}_{\mathbf{o}}$
- $0.05<\mathrm{p}<0.1$, that is when the value of p is in between 0.05 and 0.1 , it implies some weak evidence to reject H_{0}
- $0.01<\mathrm{p}<0.05$, that is when the value of p is in between 0.01 and 0.05 , implies evidence to reject H_{0}
- $\quad \mathrm{p}<0.01$ implies strong evidence to reject \mathbf{H}_{o}
(7) Always relate outcome of the hypothesis testing and statistics to the particular variables in the study; don't just conclude with 'reject the null hypothesis'. For example, state that, there is strong statistical evidence that there is no significant difference in the mean response time of teenagers and adult participants. Always interpret results within the context of the research or study.

